

複雜系統視角下的
遊戲程式設計分析

簡報大綱
● 系統概述
● 層次結構分析
● 湧現性質
● 非線性動態
● 自組織與適應性

2

● 隨機性與確定
● 相變與臨界現
● 系統穩健性
● 設計啟示
● 總結

PyLottery = 貪食蛇 + 彩票遊戲

3

簡單規則 + 複雜交互 = 湧現行為

核心特徵：
- 🐍 蛇的追蹤行為
- 🎱 隨機目標生成
- 🔄 模式動態切換
- 🎵 多感官反饋

層次結構分析
● 微觀層面 (Components)

– # 個體組件

– snakeBody = [[x1,y1],
[x2,y2], ...] # 蛇節點

– ballPos = [x, y] # 目標球

4

● 中觀層面 (Subsystems)
● 運動控制 :

– nextMove() + snakeDrawer()

● 渲染系統 :

– drawSnake() + 視覺效果

● 事件處理 :

– 鍵盤輸入 + 狀態管理

● 宏觀層面 (Emergent
Behavior)

● 遊戲循環 : 整體節拍器

● 模式切換 : 展示 ↔ 追獵

湧現性質 (Emergent Properties)
● 預期湧現：智能追蹤

– # 簡單規則
– while snakeHead != ballPos:

 dir = 'x' if dirIdx==0 else 'y' #
交替方向

 mode = dir + ("MoveMinus"
if ... else "MovePlus")

–

– # 複雜行為
– # → 螺旋逼近路徑
– # → 看似智能的決策

5

● 非預期湧現
● 視覺韻律 : 循環模式的催眠效果

● 張力建構 : 隨機性創造的不可預測感

● 動態平衡 : 自碰撞的自我修復機制

換言之…
當觀察者「忘了」自己也是受觀察的對象
之一時，他會以為發生了「非預期湧
現」。

非線性動態與反饋
● 正反饋環路

– # 進展 → 複雜度增加

– snakeBody = snakeBody[-
(10+d*10):]

– 遊戲進展 →

蛇身變長 →

碰撞機率↑ →
戲劇張力↑

6

● 負反饋環路
● # 自我修復機制

● while snakeHead in snakeBody:

 snakeBody = snakeBody[1:] # 自動截短

● 複雜度過高 →

觸發簡化 →

系統穩定↑

自組織與適應性
● 動態路徑規劃

– step = randint(1, int(math.ceil(

 abs(snakeHead[dirIdx]-
ballPos[dirIdx])/50.0

)) + 3)

– 標度不變性：
● 遠距離 → 大步移動
● 近距離 → 精細調整

7

● 方向切換機制
● dirIdx = 1-dirIdx # 二進制切換

● 局部規則 → 全域螺旋模式

隨機性與確定性的耦合
● 結構化隨機性

– # 有界隨機：不是純隨機！

– while abs(ballPos[0]-snakeHead[0])<80 or abs(ballPos[1]-snakeHead[1])<40:

 ballPosX = randint(12, int(windowSize[0]/20)-12)

 ballPosY = randint(12, int((windowSize[1]-140)/20))

8

● 設計智慧：

 確保可達性 ✅

 維持挑戰性✅

 避免退化情況✅

相變與臨界現象
● 模式轉換

– 展示模式 --[空格鍵]--> 追獵模式

● 臨界行為
● if snakeHead in snakeBody and len(snakeBody) > 8:

 # 臨界閾值 = 8

 # 觸發緊急處理模式

9

● 相變特徵：

 狀態急劇改變🔀

 閾值效應📊

 臨界點敏感性⚖️

系統穩健性分析
● 穩健性機制

– # 1. 邊界保護

– ballPosX = randint(12, int(windowSize[0]/20)-12)

– # 2. 自碰撞修復

– while snakeHead in snakeBody:

 snakeBody = snakeBody[1:]

– # 3. 資源快取

– if imgLoaded: return # 避免重複載入

10

● 脆弱點
● 資源依賴 :

● 圖片 / 音效文件缺失 → 系統崩潰

● 硬編碼參數 : 缺乏動態適應能力

(e.g., 解析度是固定的)

● 單點故障 : 主循環異常 → 全系統停止

複雜性來源
● 計算複雜性
● 狀態空間 = 位置 × 方向 × 長度 × 模式

 = O(W×H) × 4 × L × 2

 ≈ 數千萬種可能狀態

● 認知複雜性
– 多時間尺度 : 即時反應 vs 長期策略

– 預測困難 : 隨機元素 + 非線性交互

– 決策樹爆炸 : 每步都有多種選擇路徑

11

● 控制複雂性
● 用戶輸入 → 事件處理 → 狀態更新 → 渲染 → 感知

 ↑ ↓

 ←---------------- 反饋循環 ------------------←

複雜系統設計原則
● 體現的設計智慧
● 原則 實現方式 效果

模塊化 功能分離 but 適度耦合 可維護性 ↑

局部交互 簡單規則 → 複雜行為 湧現性 ↑

多層反饋 微觀→宏觀控制機制 適應性 ↑

優雅退化 自碰撞自動修復 穩健性 ↑

12

● 改進建議 (Can we make it MORE intelligent?)
● # 可引入的複雜系統特性

class EnhancedSnake:

 def __init__(self):

 self.learning_rate = 0.01 # 學習機制

 self.memory = [] # 路徑記憶

 self.cooperation_mode = False # 多蛇協作

 self.adaptive_params = {} # 自適應參數

實際應用
● 軟體工程視角

– 微服務架構 : 模塊化設計原則

– 彈性工程 : 故障自恢復機制

– 用戶體驗 : 隨機性與可預測性平衡

● 系統設計視角
– 分散式系統 : 局部規則協調全域行為

– 人工智慧 : 簡單算法產生複雜智能

– 遊戲設計 : 規則簡單 but 策略豐富

13

● 管理學視角 (人群動向 /輿論分析)
– 組織行為 : 個體交互產生團隊智慧

– 創新管理 : 約束條件下的創造性湧現

總結 : Simple but not Easy
● 複雜系統之核心特色在於：簡單的規則創造豐富的行為
● PyLottery 展現了：

 湧現之美🌟 : 簡單組件 → 複雜行為

 適應之智🔄 : 動態調整 + 自我修復

 平衡之道⚖️ : 隨機性 + 確定性

 設計之巧🏗️ : 多層次反饋機制
● 整體大於部分之和
● 簡單規則，複雜行為
● 秩序從混沌中湧現

14

	投影片 1
	投影片 2
	投影片 3
	投影片 4
	投影片 5
	投影片 6
	投影片 7
	投影片 8
	投影片 9
	投影片 10
	投影片 11
	投影片 12
	投影片 13
	投影片 14

